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Abstract— BBN Technologies (BBN), under complementary
tasks for NASA, designed the High-Throughput Distributed
Spacecraft Network (HiDSN), developed a laboratory prototype
network testbed and, currently, is integrating support for virtual-
private-networks (VPN) over such a testbed (SpaceVPN). The ul-
timate project goal is to demonstrate the use and the performance
of standard-based IPSec VPNs for secure ground-experimenter
access to emulated low-earth orbit sensor satellites in which
ground-space-sensor connectivity is achieved using the multi-hop
routed space links of HiDSN.

This paper describes architectural options for establishing
ground-space virtual private networks (i.e., SpaceVPNs), the
network self-formation mechanisms, and the network architec-
ture developed to extend the (terrestrial) Internet to space. In
the testbed, both the physical layer processing and the media-
access control protocol (i.e, MAC layer) were implemented
using software-defined radio (SDR) techniques based on the ones
developed for the GNU radio. In this paper, we also describe
key decisions made to enable the use of SDR techniques for the
spacecraft radios.

I. INTRODUCTION

The network architecture and the software-defined space-
radio developed for the High-Throughput Distributed Space-
craft Network (HiDSN)' and its follow-on Space-based Vir-
tual Private Network (SpaceVPN)? are the first to integrate
time, code and spatial multiplexing with ad-hoc networking
techniques to create a flexible feature-rich infrastructure for
ground-space and in-space communications. The HiDSN sys-
tem provides a self-forming vertically integrated network in-
frastructure for establishing and maintaining high-throughput
multi-hop communications between ground and space and/or
among multiple spacecraft operating in diverse orbits. The
SpaceVPN builds upon the HiDSN infrastructure while fo-
cusing on problems related to enabling real-time, continued,
secure experimenter access to instruments and data on-board
of sensor satellites using the Internet and [PSec-based Virtual
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Private Networks (VPNs). Fig. 1 shows a high level view of
a SpaceVPN network.

This paper is structured in four parts. In the first part, we
describe the overall HIDSN/SpaceVPN System Architecture.
In the second part, we describe the testbed that was constructed
to validate the system architecture. In the third part, we present
and discuss some results from the testbed. Finally, we discuss
our main conclusions and future work.

II. SPACEVPN SYSTEM ARCHITECTURE

In the SpaceVPN system, the HIDSN network provides the
self-forming multi-hop network. It integrates the predictability
of orbital movement to establish and maintain cross-links
and multi-hop routes, ad hoc networking techniques to au-
tonomously discover “new” neighbors, spatial multiplexing
with dynamic digital beam forming to maximize re-use of the
allocated spectrum, and variable-rate cross-links with multi-
code spread spectrum to maximize network connectivity under
large inter-spacecraft distances and distance differentials.

Transmission is performed in bursts, with typically one
packet per burst. The spectrum is fully re-used on cross-links
that are spatially isolated form each other. The spectrum is
shared using time and/or time-code multiplexing during the
times in which the spacecraft become “aligned.” Multi-code
encoding is used to adjust both the maximum effective symbol
rate of a cross-link and, combined with multi-bit modulation,



the effective instantaneous bit rate in which each packet is
transmitted over such a cross-link. The inter-spacecraft com-
munication strategy enables allocation of resources to meet
QoS requirements on a per packet basis. The number of codes
used in the encoding of each packet burst is selected to meet
both bit error rate (BER) and delay requirements of each flow
that compose the aggregate packet traffic over each cross-link.
For each spacecraft, the number of in-range neighbors, and
the distances and link performance (e.g., signal to noise ratio
or SNR) of each of the cross-links change over time.

The network (self) organizes itself into a tree-like hierarchy
for scalability. The elements that participate in the network are
called, generically, nodes. Nodes can have different combina-
tions of mobility, routing and transmission characteristics.

In terms of mobility, nodes are classified, generically, as in-
orbit nodes (e.g., spacecraft in multiple-altitude LEO, MEQ,
GEO or elliptical orbits), air-mobile nodes (e.g., aircraft and
air-mobile sensors), and ground-based nodes. Using orbital
parameters, the relative position and mobility of in-orbit
and ground-fixed nodes, albeit arbitrary, can be accurately
predicted over time. The relative position and velocity of air-
mobile and surface-mobile nodes have to be “discovered” and
“tracked” over time.

Nodes that perform routing functions (e.g., spacecraft in
low, medium and planet synchronous orbits), called router
nodes (or simply routers), form a mesh network at the highest
level. Nodes that are only sources or destinations of traffic,
called endpoints, may be affiliated with a router. The endpoints
themselves may be arranged in a two-level hierarchy (thereby
making a total of potentially three levels) with some endpoints
acting as a bridge endpoint for others. For instance, an aircraft
could act as a bridge for a surface-exploration robot on the
surface of the planet.

All nodes, regardless of its size, power and level in the
hierarchy, have identical physical layer, media access control
(MAC) layer and subnetwork (i.e., below IP) capabilities. The
RF power, antenna gain and beamforming agility may vary
from node to node.

Common capabilities, grouped per layer, are summarized in
the following sections.

A. PHY-Layer

The PHY-Layer includes the following capabilities:

o Transmission at a High-Frequency-Band (e.g., Ka): En-
ables transmission at high data rates using small-size/
high-gain antennas/arrays.

o Null Steered Burst Transmission: Enables bust-by-burst
transmission without causing interference to neighbor
spacecraft.

o Null Steered Burst Reception: Enables a spacecraft to
receive without interference from neighbor nodes and
full reuse of the available spectrum in every spatially
separable cross-link.

o Variable Rate Cross-Links: Enables spacecraft to main-
tain connectivity over a wide distance range (e.g., from
100 km to 10,000 km) by adapting the effective cross-
link data rate to the varying link attenuation (e.g., from
100 Kbit/s to 1 Gbit/s).

o Constant-Envelope RF: Enables efficient use of the
available RF power by allowing the operation of the array
antenna power amplifiers at or near saturation

B. MAC-Layer
The MAC-Layer includes the following capabilities:

o Receiver-directed frame-based communications: Enables
interference-free code multiplexing and time-slot based
spatial multiplexing. Provides support for space-time syn-
chronization (i.e., Direction of Arrival and propagation
delay measurements), burst transmission of packet traffic
with isolated (isolated datagrams), intermitting (bursty
packet traffic) and recurring (stream traffic flow) char-
acteristics, and for the discovery of new neighbors.

e Channel Access Mechanism that integrates Spatial-
Division, Time-Division and Code-Division Multiple Ac-
cess leveraging the direct-sequence orthogonal code mul-
tiplexing capabilities of BBN’s TDMA with CDMA-
encoding Multiple Access (TCeMA).

e A QoS-oriented Bandwidth Allocation Mechanism that
integrates support for long-term bandwidth allocation
for rate-based and volume-based application traffic, and
for packet flows with different delay and delay-jitter
characteristics.

C. Subnetwork-Layer

The Sub-Network Layer is highly oriented to maintaining
the network connected (i.e., a single “island”) and to control-
ling the connectivity degree (i.e., number of neighbors) in the
constellation. It includes the following capabilities:

¢ Neighbor Discovery Protocol: Enables a node to advertise
itself, find other nodes, and achieve frame, time-slot and
initial frequency synchronization with any other node that
that happens to be within range.

o Network Synchronization Protocol: Enables each node
in the network to, over time, achieve global time-and-
frequency synchronization.

« Position Based Routing: Maintains at each node, a topol-
ogy database with information of the characteristics of
each active link and leverages predictable positioning and
dynamics of nodes in space to make proactive link state
dissemination and routing decisions.

« Node Affiliation Protocol: Enables endpoint nodes to find
a router node that can relay traffic on its behalf, and
perform dynamic hand-off as necessary as the network
topology and geometry changes over time.

o Packet Forwarding Protocol: Makes decisions, when a
packet arrives, of what should be done with it (i.e.,
consume, relay or drop).



D. IP Services and Interfaces

The proposed architecture does not require each satellite
node in space to support IP services, but does require sensor
satellites to provide IP services for their onboard instruments
in order to allow researchers to access those instruments. We
expect that sensor satellites will usually affiliate as terminal
nodes with a HiDSN satellite, and that there will be one or
more HiDSN satellite nodes between that sensor satellite and
the ground station supporting it any point in time. It is also
possible that a ground station may connect directly to a sensor
satellite without any intermediate HiDSN satellites, depending
on the relative position and distance of the sensor satellite

The IP that supports the connection from the researcher to
the instrument can span multiple satellite links, depending on
the number of HiDSN satellites along the path, but those links
need not support IP services. The router at the ground station
and the instrument on the sensor satellite are the only two
required IP nodes in the path between the ground station and
the instrument.

When a sensor satellite connects directly to a ground
station router, the sensor satellite IP interface must support
neighbor discovery between the sensor IP interface and the
ground station router IP interface as well as packet forwarding
between the instrument and the ground router. The term
“connects directly” in this sentence refers to the IP network-
level connection. Of course, the direct connection requires an
existing link-level connection between the ground station and
the sensor satellite, as well as local network connections to
the ground station router and local satellite connections to the
instrument.

When a sensor satellite connects to the ground station router
through intermediate HiDSN satellites, neighbor discovery and
packet forwarding services between the instrument and the
ground router are still required, but these are carried out
through a subnetwork layer on the HiDSN satellites. HIDSN
satellite routers use subnetwork functions to select the best
available path between HiDSN nodes to connect the sensor
satellite and ground station router IP interfaces.

E. Planned VPN Protocol Support

For SpaceVPN IPSEC-based VPNs, in addition to IP, the
spacecraft nodes must support all the protocols required for
IPsec with a PKI using certificate-based keys (ESP, AES, IKE,
ISAKMP, etc.). The requirement for certificate-based keys im-
plies that the sensor satellite nodes must also support interfaces
to Certificate Authorities (on the ground for this stage of the
architecture), including key management protocol for over the
network key distribution and revocation. The recommended
CA includes X.509 certificates on X.500 directory servers
accessed via Lightweight Directory Access Protocol (LDAP).
The exact choice of protocols will depend on the Certificate
Authority that NASA selects (NASA has used an Entrust
CA internally in the past) for this architecture, because some
CA functions, particularly those related to monitoring and

management, still vary between vendors. Because certificates
will be crucial to implementing and managing VPNs, the CA
interface will have to support multiple primary and backup
CAs. The space-based sensor nodes will access these CAS via
ground stations at multiple Internet addresses as a satellite’s
ground connection moves from one ground station to another
during orbit.

F. Support for Ground-Space VPNs (SpaceVPN)

A Virtual Private Network (VPN) is a private network
running over a shared public infrastructure such as the Inter-
net. Several technologies form the building blocks of Virtual
Private Networks:

o Tunneling: makes the network between VPN endpoints
look like simple links, even if it actually involves
complex connections through multiple infrastructures.
IPsec, Point-to-Point Tunneling Protocol (PPTP), Layer
2 Tunneling Protocol (L2TP), and Multi-Protocol Label
Switching (MPLS) are examples of tunneling protocols.

o Authentication: verifies the identities of VPN users and
devices and ensures that all data transmitted on the VPN
originates only from those authenticated sources. Public
Key Infrastructure (PKI), RADIUS, and Smartcards are
examples of authentication mechanisms. Access Control
provides ways to manage the authorized use of resources.
X.500 directory servers and Access Control Lists (ACLs)
are technologies that organize and distribute access con-
trol policies.

e Data Security: ensures that the data transmitted over the
VPN is not visible to anyone except the participants in
the VPN. Cryptographic algorithms such as Triple Data
Encryption Standard (3DES) and Advanced Encryption
Standard (AES) are used to encrypt and decrypt VPN
data.

o Data Provisioning: ensures that network resources will
provide adequate delivery for VPN packets, so that
measurable performance characteristics like delay and
throughput suit the applications transmitting data over
the VPN. QoS and Traffic Engineering are examples of
techniques used to provision network resources for VPNs.

Implementing interfaces for each of the VPN building
blocks is complicated, from both performance and security
standpoints, and the solutions are computationally intensive
compared to those used for providing unprotected network
access. Special purpose VPN devices such as VPN gateways
and special-purpose software such as VPN clients are often
necessary to provide adequate support for users, particularly
for high-speed data connections such as those to many NASA
satellites.

A VPN gateway has two or more network interfaces. The
interface on the public Internet side accepts only packets
destined for established secure tunnels and specific protocol
messages needed to negotiate and establish those tunnels. The
interface on the private network side accepts only packets that



conform to policy rules on the gateway about what kinds
of traffic should travel through secure tunnels (e.g., traffic
with a destination address listed in the VPN gateway’s policy
table). The VPN gateway sets up a secure connection to
another VPN device at an appropriate destination on behalf of
the user whose traffic was received on the gateway’s private
network interface, unless a tunnel for that traffic already exists.
Once a tunnel is in place, the gateway forwards the packet
from the private network over the tunnel, applying appropriate
data security and authentication processing before the packet
emerges on the public interface. In addition to the user traffic
just described, a VPN gateway usually accepts monitoring
and control traffic on a secure management port associated
with one of its interfaces, depending on how the gateway is
deployed.

A VPN client connects a single private workstation to a
remote VPN device over the workstation’s network interface,
providing the same tunneling, authentication, access control
and data security functions.

VPN tunneling functions are most frequently implemented
at layer 2 (Medium Access Control (MAC) and layer 3
(network) of the OSI model. Layer 2 solutions are most often
used for dial-in services where the Point to Point Protocol
(PPP) is tunneled through the Internet to reach an office
network, so that the user does not have to pay for a long-
distance phone call to the office. Layer 2 VPNs have generally
proven less secure and less manageable than layer 3 VPN,
so we recommend layer 3 tunneling for NASA solutions,
specifically tunnels that use the IPsec suite of protocols (IETF
RFCs 2401-2412).

The IPsec protocol suite allows the endpoints of a VPN
to establish a Security Association (SA) that determines how
these IPsec peers will exchange data securely on that VPN.
The protocols define ways that peers can identify each other,
exchange key information, create shared secret keying ma-
terial, and negotiate the SAs that are required to implement
IPsec tunnels. IPsec provides many options for performing
network encryption and authentication. Each IPsec connection
can provide encryption, integrity, authenticity, or all three
services.

IPsec requires that the endpoints of the tunnel first authen-
ticate each other, for example by using digital certificates.
To implement the security services, the two IPsec peers must
determine exactly which algorithms to use (for example, AES
or 3DES for encryption; MD5 or SHA-1 for integrity), and
then share session keys that use these algorithms. The IPsec
peers use the Security Associations that they establish for each
VPN to determine whether a particular packet belongs to a
VPN or not, and how to process the packets that do. If the
VPN includes authentication, the peers will authenticate each
packet using AH or ESP protocols in tunnel mode.

The IPsec VPN that supports the secure connection from
the researcher to the instrument on board the sensor satellite
can span multiple satellite links, depending on the number

of HiDSN satellites along the path, but those links need not
support IP services.

III. TESTBED OVERVIEW

We constructed a testbed to validate the system architecture
described in the previous section. The testbed constructed
integrates the following key technologies:

o Software Defined Radio (SDR)

« HiDSN

o« TCeMA

o Emulation of Null-steered spatial multiplexing

o Orbit-predictable spacecraft integrated with ad-hoc tech-

niques for neighbor discovery and self-formation

o Standard [Psec VPNs

« Position-based routing

The SpaceVPN Testbed leverages standard practices for
SDR and GNU-principles while providing for future interop-
erability. Architectural features include:

o Clean separation between PHY/MAC and Hardware lay-

ers PHY and MAC layer interface

o Separate Hardware Abstraction Layer process

o Standard interface between Python and C/C++ SDR

modules Flexibility to move C++ code modules to DSP
platform to support significantly higher data rates

« Significantly compressed development cycle through use

of Python/C++ paradigm, software loopbacks and block-
level implementation and testing

e Event driven MAC with synchronous interface to the

hardware.

In its current form, the proposed architecture is the result of
over five years of development at BBN Technologies [1]-[8].
The feasibility of the architecture has been verified through
extensive simulation. To validate the architecture, we have
implemented a hardware and software testbed. In this paper,
we describe the testbed implementation and present some
results.

A. Hardware

The testbed consists of 4 Intel-based Linux Servers shown
in Fig. 2(a). Each of the servers is equipped with a Red-River
WaveRunner PMC 301 Radio Frequency Board (Fig. 2(b))
used for 70 MHz baseband transmission/reception, a Pentium
IV processor running at 2 GHz, and 1 GB of RAM. The servers
each run the RedHat 9.0 Linux distribution. The choice of
distribution and version was determined by the WaveRunner
driver software.

Each of the servers is equipped with a Dynamic Beam
Emulation (DBE) Board designed and constructed at BBN.
The DBE boards are also used for mobility management (as
described in Section III-D and III-E). The DBE boards are
equipped with voltage-controlled variable attenuators that al-
low each server to control the level of transmit side attenuation
to each of the other servers and hence emulate dynamic beam
forming and path loss variation between nodes. The transmit
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signal from each server’s WaveRunner board is split and sent
to each of 3 attenuators. Commands from each server are
transmitted over a USB interface to a USB controller on the
DBE board, where they are then converted to TTL levels
that are used to control the attenuation levels of each of the
attenuators. On the receive side, the signal fed into a server’s
WaveRunner receive interface is simply the sum of the transmit
signals of all of the other servers. Fig. 2(c) shows one of the
DBE boards.

The four nodes are connected in a mesh topology via
the dynamic beam/mobility emulation boards as shown in
Fig. 2(d). Fig. 2(a) shows the actual testbed.

B. Software Overview

GNU Radio [9] is the defacto standard Software Defined
Radio (SDR) architecture in the open source community. GNU
Radio uses a modular, block-based architecture to implement
complex signal processing chains in a convenient and efficient
manner. These signal processing chains are capable of generat-
ing or receiving radio signals from a variety of sources: IEEE
802.11 access points, AM/FM broadcast radio, Television,

Celestial Radio sources, and so on. GNU Radio uses a hybrid
Python/C++ architecture where blocks are implemented in
C++, which is suitable for computationally intensive process-
ing, but also provide interfaces to the higher level Python [10]
programming language. Python is a higher level language that
provides a convenient mechanism to control the configuration
of large numbers of blocks and the high level program flow
of the SDR.

The Space VPN physical layer processing and Media-Access
Control protocol (i.e., MAC layer) are implemented using SDR
techniques based on the ones developed for the GNU Radio.
The Physical and MAC protocols are both implemented using
an architecture similar to that of GNU Radio. Functionality in
both the transmit and receive paths is implemented in modular
blocks that are then connected into processing graphs. Data
and metadata are input to these graphs and the output of
the graphs is complex I- and Q- samples for transmission,
in the case of the transmit graph, or user data, in the case of
the receive graph. In the SpaceVPN testbed, this block-based
architecture has been implemented from scratch and includes a
number of extensions to the existing GNU Radio architecture:



« Extension of basic block-based architecture from PHY to
PHY and MAC layer

o Extension to include state machines incorporated in a
configurable manner

o Dynamic processing chain configuration

o Designed for discrete event driven systems

« No buffer limitation, pass pointers instead of buffers

o Dynamic memory management: blocks are able to dy-
namically vary the size of buffers

o High visibility and exchange of information between
modules

o Support for frame structure

o Support for flexible, acknowledgeable asynchronous
event notification

o Parallel data and control streams

o Configurable MAC layer

o Support for time-based burst transmission

In addition to these enhancements, we have developed
hardware and software that enable us to perform dynamic
beam emulation and emulation of node mobility.

C. SpaceVPN Software Radio
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o Asynchronous request model: enables event driven radio

There are three main architectural features implemented as

part of our SpaceVPN Software Radio:

e Active Objects: [11], [12] describe active objects. These

are objects that run in their own thread of execution
and are able to pass messages to each other in a
thread-safe manner. Active objects may implement both
asynchronous and synchronous methods. Synchronous
methods are blocking methods that do not return until
the underlying operation has completed. Asynchronous
methods are non-blocking methods that take as a param-
eter a callback thread-safe message queue. Asynchronous
methods return immediately, and notify the caller when
an operation is complete by sending a message to the
callback queue. Active objects are one of the building
blocks of the SpaceVPN Software Radio.

Message Passing: information is passed between blocks
as discrete chunks of information consisting of data and
control. Data usually consists of bytes, bits, M-ary QAM
symbols, TCeMA spread multi-codes or samples. Control
information usually consists of transmit or receive profiles
that supply parameters to the blocks in a particular
processing chain. These parameters could include, for ex-
ample, modulation/demodulation scheme, Forward Error
Correction scheme, transmit power level, and so on.
Control Plane: in the GNU Radio model, only data
is moved between blocks. In our implementation, data
and control information are moved between blocks in
lockstep. Each data path has a parallel control path. Each
data message that is sent between blocks is accompanied
by a control message that traverses the parallel control
path. The use of a control path enables us to dynamically
reconfigure our processing blocks.

operation with full visibility (e.g., by higher layers)
of processing progress at individual modules, including
actual transmission times of frame-scheduled bursts and
status changes in the SW/HW interface. The use of
profiles for passing configuration information between
layers and between processing blocks provides a high
degree of configurability.

Fig. 3 illustrates the functional architecture of the radio
and network protocol subsystems we have been developing
throughout the project. Fig. 4 shows an overview of the
SpaceVPN software functions, interfaces and architecture.
Also illustrated are the interfaces between such component
subsystems. The detailed characterization of these interfaces
was shown to be key for creating a modular, expandable and
flexible radio subsystem.

Fig. 4 shows an overview of the software architecture. The
MAC layer is implemented purely in Python and consists
of a number of active objects each implementing various
functionals. These functionals include neighbor discovery,
neighbor synchronization, neighbor link maintenance, mobility
manager, scoreboard scheduler and so on. The MAC layer
communicates with the PHY layer below it via the use of the
HiDSN PHY Layer API [4]. This interface is implemented by
the HIDSN Task object shown in the figure. Round objects are
implemented in C++, while all other objects are implemented
in Python. Within the PHY layer, both the transmit and receive
chains are implemented using a hybrid Python/C++ model
similar to that used by GNU Radio: computationally intensive
software is written in C++ and exposes high level Python
interfaces for ease of access and configuration at the Python
layer.
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Fig. 4. Software Architecture

D. Dynamic Beam Emulation

The SpaceVPN Testbed includes four dynamic beam em-
ulation boards. Each beam emulation board (Fig. 2(c)) is
associated with a single RF board and host combination. The
dynamic beam emulation boards enable a host to split its RF
output into three separate beams. Each of these beams can
be individually attenuated via the use of computer controlled
attenuators. The attenuation can be varied from 4.0 dB up to
35.0 dB. By varying the attenuation, it is possible to emulate
both null-steering and distance variation between nodes. On
the receive side of the boards, the RF output from all neighbors
is multiplexed and directed into the RF input of the computer
associated with the board.

The boards are controlled via a USB I/O 24 TTL micro-
controller. This provides an interface between the USB board
on the host computer and the TTL logic required to drive the
attenuators. The dynamic beam emulation driver software is
implemented in Python.

Software has been developed and integrated that allows
burst-by-burst attenuation control. Each burst to be transmitted
has an associated “dynamic beam emulation” profile. This
profile specifies the attenuation required on each of the three
beams for transmission of the burst. This effectively allows
the host to control the attenuation on two of such beams (i.e.,
null-steering direction emulation) and the attenuation in the
direction of a target destination node (i.e., combined beam-
gain and path loss emulation).

Fig. 5 shows sample oscilloscope traces that show the result

of burst-by-burst beam emulation and variable link attenuation
(mobility emulation). Fig. 5(a) illustrates the capability of the
beamforming emulator software to generate burst-by-burst at-
tenuation controls that are synchronized with the time instants
in which the corresponding data burst becomes available for
transmission. Fig. 5(b) illustrates the capability of creating an
emulated null-steered beam composed of an emulated high-
gain/low-attenuation (4 dB) beam towards a target neighbor
node and an emulated null/high-attenuation (35 dB) beam
towards a non-intended neighbor.

E. Mobility Management

Mobility management also utilizes the dynamic beam emu-
lation/mobility boards, but in a slightly different manner than
the dynamic beam emulation software. Mobility management
operates in a global manner and allows a centralized “mobility
manager” to control the attenuation on all of the attenuators
in the system. In doing so, the mobility manager is able to
dynamically create network topologies where the emulated
distance between nodes varies with time.

The mobility management function is implemented in two
parts: a central “mobility manager” that controls the overall
network topology and host-based “mobility agents” that com-
municate with the mobility manager, obtain topology updates
from the mobility manager and then individually adjust the at-
tenuation on their associated dynamic beam emulation boards.
Thus, the mobility manager exercises global topology control
by directing individual hosts to attenuate their beams appro-
priately. The overall topology is defined in a configuration file
that is read by the mobility manager. This configuration file
specifies a sequence of instructions to be sent out to each host
in the network. All hosts in the network are updated at the
same time. The instructions include how much attenuation to
apply to each beam as well as instructions on which neighbors
are in range and which neighbors are out of range. Hosts
send an acknowledgement to the mobility manager upon the
completion of a specific event (e.g. neighbor discovery). Once
the mobility manager has received acknowledgments from all
of the hosts in the network, it issues instructions for the next
topology.

E TCeMA Containerization

Data transmission is performed in packets of arbitrary
length (in bits). Packets are encapsulated as illustrated in
Fig. 6. They are segmented in fixed-length chunks; chunks
are FEC protected in turbo chunks; turbo chunks are M-
ary QAM modulated (and compressed) into possibly fewer
modulated chunks; modulated chunks are grouped into fixed-
size payloads; payloads are transmitted in containers formed
by pre-pending a fixed-size BPSK header to each payload.

The payload size is fixed and dimensioned to carry exactly
eight 1920 M-ary QAM symbols. Distinct packets are carried
in distinct payloads. The modulation level (i.e., bits/symbol)
is selected on a per packet basis and, consequently, there is no
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mix of modulation levels in a payload. The modulation level
used in the payload is specified in the container header. The
number of modulated chunks that fit in one payload varies
with the modulation level selected for the packet.

Fig. 7 shows the final stage in the TCeMA container-
ization process. Fig. 7(a) shows two containers worth of I-
and Q- samples (along with the three-dimensional and two
dimensional constellation diagrams). Fig. 7(b) shows the two
containers after TCeMA spreading.

G. Sample Offset Estimation and Interpolation

In practice, the transmit/receive clocks of spacecraft com-
municating using SpaceVPN would be similar, however, not
identical. In order for two spacecraft to communicate, and,
more importantly, to enable a spacecraft to receive simulta-
neously from multiple neighbors, they must first synchronize
their clocks. SpaceVPN provides three mechanisms to do
this: coarse-grained timing and frequency synchronization

4 dB attenuation

e

Transmit .
Beams

9 dB attenuation

s 35 dB attenuation

Diagnostic start of
frame indication.

(b) Mobility Emulation.

Beam and Mobility Emulation Results

during neighbor discovery, fine-grained timing synchronization
through the synchronization slot, and extremely fine-grained
timing synchronization though the sample offset estimation
and interpolation process shown in Fig. 8.

In order to correct for these timing and frequency offsets, we
must first estimate the magnitude of the offsets, then choose an
optimal interpolation vector that will compensate and finally
interpolate the received waveform with this vector to ensure
that the sample points are again at optimal portions of the
interpolated waveform.

Fig. 8 shows a detailed flow chart of the interpolation
process. Data is transmitted from the transmitter and over
the channel to the receiver. The channel will delay and
distort the transmitted symbol vector. The rcv-symbols-vector
represents the transmitted signal, as seen at the receiver having
been passed through the channel. The receiver oversamples
the rcv-samples-vector by a factor of 4. These samples are
then passed into block 4, which reconstructs the HiDSN
container from the received samples. Container reconstruction
involves using cyclic correlation to extract the appropriate set
of codes from the received samples. Each timeslot consists
of 8 spread symbols, with each spread symbol containing
up to 512 codes. The 8 code “stripes” in each timeslot
are extracted and then “spliced” together to form a HiDSN
container. The reconstructed-container-samples-vector is then
sent to block 5 for timing offset estimation and to block 6.2
for optimal downsampling. Block 5 determines the timing
offset. This is a measure of the temporal offset between the
received sampled signal waveform and the optimal sampling
point. Block 5 calculates the sample-time-offset (this time),
the closest-sample-phase (which identifies which of the 4
oversample phases is the closest to the optimal phase) and
the first-sample to use. These three quantities are forwarded to
block 6.1 which then chooses the optimal interpolation vector,
while the closest-sample-phase is sent to block 6.2 which then
downsamples the reconstructed-container-samples-vector by
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selecting only those samples that correspond to the closest-
sample-phase. Finally, the optimal-interpolation-vector and
the downsampled-reconstructed-container-symbols-vector are
forwarded to block 7, where they are convolved to produce
the interpolated waveform. This interpolated-downsampled-
reconstructed-container-symbols-vector is then forwarded to
block 8 for demodulation.

Fig. 9 shows an example of a sampled received signal
waveform that would be received at block 4. Fig. 9(a) and
Fig. 9(b) show the In-phase (I) and Quadrature (Q) samples
time series respectively. Fig. 9(c) shows the magnitude of the
sampled waveform. Fig. 9(d) shows the constellation diagram
formed by plotting the in-phase versus quadrature component.
By looking closely at Fig. 9(d) it is possible to discern a
number of interesting features. There is a faint diagonal line
that is aligned diagonally starting at the bottom left of the
square formed by the samples and ending at the top right.

This line corresponds to the header samples of the container
which use 45 degree Binary Phase Shift Keying (BPSK). In
this case, the data portion of the container is using 16-QAM.
It is possible to make out the faint 16-QAM constellation.
This corresponds to a 4 x 4 grid of data points. Due to the
delay inherent in the transmission and propagation process and
the oversampling, there is a lot of noise due to intersymbol
interference. This shows up as random scattering of samples
about the nominal 16 positions. Ideally, we would see the
grid as a distinct set of points, with all samples located on

one of the 16 points of the grid. In practice, the observed
signal would not be able to be decoded regardless of how high
the received signal to noise ratio (SNR) . However, using the
procedure outlined above, we are able to practically eliminate
the intersymbol interference and allow the system to achieve
the BER corresponding to the actual received SNR, including
processing gain from cyclic correlation.

Fig. 10 shows the interpolated symbols obtained by convolv-
ing the optimal interpolation vector with the reconstructed-
container-vector. This figure is in the same format as Fig. 9.
There are a number of differences. First of all, the in-phase
and quadrature components of the signal in Fig. 10(a) and
Fig. 10(b) show a number of discrete levels. Compare this
with Fig. 9(a) and Fig. 9(b) that have samples distributed
seemingly randomly over the range of amplitude. Similarly
for the magnitude in Fig. 10(c) versus Fig. 9(c). The most
striking and important difference is between the constellation
diagrams in Fig. 10(d) and Fig. 9(d). In Fig. 10(d) we can
clearly see the distinct points that form the 4 x 4 16-QAM
constellation. Note the clear separation between points and
the lack of any random points between or around grid points.
This represents a much higher SNR (due to the elimination
of intersymbol interference) than shown in Fig. 9(d) and will
result in a much lower BER after demodulation. It is also
possible to see points that correspond to the 45 degree BPSK
that is used in the header, as well as a few points spread around
the constellation that correspond to the Unique Word that is
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used within the header of each packet.

By enabling the extremely fine-grained timing and fre-
quency synchronization of spacecraft transmit/receive clocks,
SpaceVPN enables spacecraft to spacecraft communication.
In addition, SpaceVPN enables a single spacecraft to receive
and decode simultaneous or time overlapped transmissions
from multiple spacecraft with similar, but non-identical trans-
mit/receive clocks.

H. Network Self Formation

Although in a typical space-based system one can assume
that the relative position (i.e., coordinates) of the various nodes
can be calculated based on orbital equations, one cannot and
possibly should not assume that all information required to
establish a cross link will be available at all times at all nodes.
In the SpaceVPN system, such an initial connection is estab-
lished through a Neighbor Discovery protocol that assumes
minimum or no knowledge about the eventual presence and
3D-location of a potential neighbor node. In our developed
Neighbor Discovery protocol, illustrated in Fig. 11(a), the
only information we assume known (but not required) by
the node that performs neighbor discovery is the approximate
relative angular direction of a potential neighbor. This angular
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Fig. 10. Interpolated Samples Waveforms

direction was used in our laboratory prototype tests and
demonstrations to transmit HELLO bursts using (emulated)
null-steered beamforming in a way that the new neighbor
can be discovered and a receiver-directed synchronized data
link can be established without causing any interference with
already established neighbors. The neighbor discovery process
is essential to creating a network with self-forming character-
istics.

In the SpaceVPN such neighbor discovery is performed
using three types of control bursts, each carrying increasing
levels of information: HELLO bursts are transmitted “when-
ever possible” while scanning the transmitting node frame.
A HELLO burst, when received in a specific time slot of
the receiver’s frame called DISCovery time slot cause the
transmission of a FOUND-YOU burst that includes detailed
timing and carrier frequency synchronization information. This
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information can be in the form of actual parameters encoded in
the burst or information that can be measured at the receiving
node. Under normal circumstances the FOUND-YOU burst
is received in the DISCovery time slot of the node that
transmitted the HELLO burst and triggers the transmission of
an acknowledgement burst called FOUND-YOU-ACK. The ex-
change of FOUND-YOU and FOUND-YOU-ACK is sufficient
for the two involved nodes to start exchanging SYNC bursts.
SYNC bursts are used to measure the SNR quality of the cross-
link and to define maximum achievable bit rates (given desired
packet BER). These SNR measurements are used to keep the
link alive (or not) and to periodically update (at least one per
multiframe) time and frequency synchronization as well as
relative angular orientation. The relative angular orientation
is important for non-interfering transmissions performed with
null-steered beamforming. For this, SYNC bursts are received
with two forms of multiplexing: code multiplexing and null
steered beam multiplexing. Comparisons between these two
forms of multiplexing enables compensating for Radio Fre-
quency (RF) energy “leaks” that may occur when one uses
actual array antennas (with non negligible coupling among
neighbor array elements). In Fig. 11(b) we illustrate a typ-
ical neighbor discovery burst exchanged between previously
unknown but neighbor nodes used in network self-formation
lab demonstrations with emulated null-steered beams. In the
figure, we also illustrate (yellow overlay) the control time slots
of the SpaceVPN frame: SYNC, CONTention, ACTivity and
DISCovery. The CONT and ACT time slots are used to inform
the receiving node about the relative time-code location of
incoming data bursts. The function of these CONT and ACT
is particularly important as it enables flexible multiplexing
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of multi-application data burst, possibly with different QoS
requirements, over space links with long delays.

1. IP Integration

The SpaceVPN Software Radio integrates with the native
IP stack running on our Linux servers. Fig. 12(a) shows
the complete protocol stack from the IP layer down to the
hardware layer. The HiDSN layer sits above the physical
hardware and implements all of the technologies discussed
in Section IIl. A software daemon, net2macd provides the
interface between the HiDSN layer and the Linux kernel’s IP
stack. This daemon communicates with the HiDSN layer via
a UNIX named pipe (a form of Inter-Process Communication)
and with the Linux kernel via the use of the Linux tun
interface. This driver enables a user-space application to insert
itself into the Linux protocol stack.

On transmit, IP packets from applications such as ping are
forwarded to the Linux IP stack. IP packets are intercepted by
the Linux kernel and forwarded to the HiDSN protocol stack
via the Tun/Tap driver and net2macd daemon. Packets then
traverse the HiDSN protocol stack and are transmitted via RF
hardware. On the receive side, the reverse process is used.

Fig. 12(b) shows a simplified diagram of the planned final
integrated application. The HiDSN PHY layer will forward
link quality characteristics (received power, received noise
power, frequency correction factor, fine-grain timing adjust-
ment rate) to the data link/MAC layer. This layer will then
store those in a trace record database. The trace record
database is periodically queried by the link characterization
module and returns the requested trace records. The link
characterization module then calculates a link metric (s) based
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on the processed trace records and then forwards those metrics
to the layer 2 routing module. The layer 2 routing module
then calculates the next hop forwarding table and updates
the forwarding modules table. The layer 2 routing module
also calculates and forwards a set of radio profiles which are
used by the physical layer to determine things such as the
transmission power to use and the level of modulation to use
for a given next hop neighbor.

Fig. 13 illustrates the support for IP demonstration per-
formed to emulate the Internet access of an experimenter
(Fourier) connected to the terrestrial Internet to an IP-
addressable instrument on board a sensor satellite (Maxwell)
through a dynamically established RF link established between
a ground site (Lagrange) and the sensor satellite.

IV. CONCLUSIONS

We have described architectural options for establishing
ground-space virtual private networks (i.e., SpaceVPNs), the
network self-formation mechanisms, and the network architec-
ture developed to extend the (terrestrial) Internet to space. In
the testbed, both the physical layer processing and the Media
Access Control protocol (i.e., MAC layer) were implemented
using Software Defined Radio (SDR) techniques based on
the ones developed for the GNU radio. In this paper, we
also describe key decisions made to enable the use of SDR
techniques for the spacecraft radios.

The Space VPN testbed includes the following key technolo-
gies:

o Software Defined Radio

o HiDSN

¢ TCeMA

o Emulation of Null-steered spatial multiplexing

(b) (Planned) Full IP Integration
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o Orbit-predictable spacecraft integrated with ad-hoc tech-
niques for neighbor discovery and self-formation
« Position-based routing

Current results demonstrate the feasibility of the proposed
architecture and technologies in providing end-to-end IP con-
nectivity between ground-based scientists and sensors on-
board LEO sensor satellites. Future work will involve the
integration of standard IPSec VPNS into the testbed to demon-
strate the feasibility of the overall SpaceVPN architecture.
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